sábado, 15 de octubre de 2011

Soplado


 Antecedentes
Esta técnica se usó para crear un bote para las propinas en EE.UU en 1802. El proceso de moldeo por soplado nace de la combinación de técnicas de ingeniería de polímeros como el moldeo por inyección con el de técnicas de procesamiento de vidrio, particularmente el de la producción de botellas. La producción de botellas de vidrio requiere técnicas actualmente muy diferentes del moldeo por soplado, aunque en sus orígenes es similar.

Moldeo por soplado
El moldeo por soplado es un proceso utilizado para fabricar piezas de plástico huecas gracias a la expansión del material. Esto se consigue por medio de la presión que ejerce el aire en las paredes de la preforma, si se trata de inyección-soplado, o del párison, si hablamos de extrusión-soplado.
Este proceso se compone de varias fases, la primera es la obtención del material a soplar, después viene la fase de soplado que se realiza en el molde que tiene la geometría final, puede haber una fase intermedia entre las dos anteriores para calentar el material si fuera necesario, seguidamente se enfría la pieza y por último se expulsa. Para facilitar el enfriamiento de la pieza los moldes están provistos de un sistema de refrigeración así se incrementa el nivel productivo.

Variantes del proceso

Moldeo por inyección-soplado


Representación del proceso de inyección-soplado.
El moldeo por inyección-soplado consiste en la obtención de una preforma del polímero a procesar, similar a un tubo de ensayo, la cual posteriormente se calienta y se introduce en el molde que alberga la geometría deseada, en ocasiones se hace un estiramiento de la preforma inyectada, después se inyecta aire, con lo que se consigue la expansión del material y la forma final de la pieza y por último se procede a su extracción. En muchas ocasiones es necesario modificar el espesor de la preforma, ya sea para conseguir una pieza con diferentes espesores o para lograr un espesor uniforme en toda la pieza, pues en la fase de soplado no se deforman por igual todas las zonas del material. La ventaja de usar preformas consiste en que estas se pueden inyectar y almacenar, producir diferentes colores y tamaños, los cuales pueden hacerse en lugares distintos a donde se realizará el soplado. Las preformas son estables y pueden ser sopladas a velocidad alta según la demanda requerida.

.

Moldeo por extrusión-soplado

Representación del proceso de extrusión-soplado.
El moldeo por extrusión soplado es un proceso de soplado en el que la preforma es una manga tubular, conformada por extrusión, llamada párison, el cual se cierra por la parte inferior de forma hermética debido al pinzamiento que ejercen las partes del molde al cerrarse, posteriormente se sopla, se deja enfriar y se expulsa la pieza. Con este proceso se pueden obtener contenedores de hasta 10.000 litros de capacidad sin embargo no se consiguen tolerancias demasiado estrechas. Se puede controlar el espesor del tubo extruido si se requiere con un equipo auxiliar de boquilla variable. También se puede realizar la extrusión de forma discontinua para determinadas formas de trabajo, para ello se utiliza un equipo auxiliar denominado acumulador que dosifica la carga de polímero en una cámara (véase EQUIPOS Y UTILLAJE).


Materiales a los que se aplica
 
Los materiales empleados para el proceso de soplado pertenecen a la familia de los termoplásticos. Esto se debe a que se necesita que el material tenga un comportamiento viscoso y se pueda deformar cuando tenga una temperatura determinada, pues de otra forma la presión ejercida por el aire inyectado no podría expandir el material por la cavidad del molde. Los principales termoplásticos utilizados dependen de la técnica empleada, para extrusión-soplado son; PEBD, PEAD, PVC-U, PS, PP, PA y ABS. Los utilizados en la técnica de inyección soplado son; todos lo empleados en extrusión-soplado y además el PE cristal y PET.
Galon de Agua

jueves, 13 de octubre de 2011

Máquina de Inyección

Las partes más importantes de la máquina son:

Unidad de inyección

La función principal de la unidad de inyección es la de fundir, mezclar e inyectar el polímero. Para lograr esto se utilizan husillos de diferentes características según el polímero que se desea fundir. El estudio del proceso de fusión de un polímero en la unidad de inyección debe considerar tres condiciones termodinámicas:
  1. Las temperaturas de procesamiento del polímero.
  2. La capacidad calorífca del polímero Cp [cal/g °C].
  3. El calor latente de fusión, si el polímero es semicristalino.
El proceso de fusión necesita de un aumento de la temperatura del polímero, que resulta del calentamiento y la fricción de este con la cámara y el husillo. La fricción y esfuerzos cortantes son básicos para una fusión eficiente, dado que los polímeros no son buenos conductores de calor. Un incremento en temperatura disminuye la viscosidad del polímero fundido; lo mismo sucede al incrementar la velocidad de corte. Por ello ambos parámetros deben ser ajustados durante el proceso. Existen, además, cámaras y husillos fabricados con diferentes aleaciones de metales, para cada polímero, con el fin de evitar el desgaste, la corrosión o la degradación. Con algunas excepciones —como el PVC—, la mayoría de los plásticos pueden utilizarse en las mismas máquinas.
La unidad de inyección es en origen una máquina de extrusión con un solo husillo, teniendo la cámara calentadores y sensores para mantener una temperatura programada constante. La profundidad del canal del husillo disminuye de forma gradual (o drástica, en aplicaciones especiales) desde la zona de alimentación hasta la zona de dosificación. De esta manera, la presión en la cámara aumenta gradualmente. El esfuerzo mecánico, de corte y la compresión añaden calor al sistema y funden el polímero más eficientemente que si hubiera únicamente calentamiento, siendo ésta la razón fundamental por la cual se utiliza un husillo y no una autoclave para obtener el fundido.
Una diferencia sustancial con respecto al proceso de extrusión es que durante la dosificación el husillo retrocede transportando el material hacia la parte anterior de la cámara. Es allí donde se acumula el polímero fundido para ser inyectado. Esta cámara actúa como la de un pistón; el husillo entonces, se comporta como el émbolo que empuja el material. Tanto en inyección como en extrusión se deben tomar en cuenta las relaciones de PvT (Presión, volumen, temperatura), que ayudan a entender cómo se comporta un polímero al fundir.




Unidad de cierre
Es una prensa hidráulica o mecánica, con una fuerza de cierre suficiente para contrarrestar la fuerza ejercida por el polímero fundido al ser inyectado en el molde. Las fuerzas localizadas pueden generar presiones del orden de cientos de MPa, que sólo se encuentran en el planeta de forma natural únicamente en los puntos más profundos del océano.
Si la fuerza de cierre es insuficiente el molde tenderá a abrirse y el material escapará por la unión del molde. Es común utilizar el área proyectada de una pieza (área que representa perpendicularmente a la unidad de cierre el total de la cavidad) para determinar la fuerza de cierre requerida, excluyendo posibles huecos o agujeros de la pieza.
 F = {Pm} \times {Ap}
Donde:
F = Fuerza (N)
Pm = Presión media (Pa)
Ap = Área proyectada (m2)
Molde

El molde (también llamado herramienta) es el espacio donde se genera la pieza; para producir un producto diferente, simplemente se cambia el molde, al ser una pieza intercambiable que se atornilla en la unidad de cierre. Existen varios tipos de molde, para inyectar plasticos, metal, etc.
Las partes del molde son:
  • Cavidad: es el volumen en el cual la pieza será moldeada.
  • Canales o ductos: son conductos a través de los cuales el polímero fundido fluye debido a la presión de inyección. El canal de alimentación se llena a través de la boquilla, los siguientes canales son los denominados bebederos y finalmente se encuentra la compuerta.
  • Canales de enfriamiento: Son canales por los cuales circula refrigerante (el más común agua) para regular la temperatura del molde. Su diseño es complejo y específico para cada pieza y molde, esto en vista de que la refrigeración debe ser lo más homogénea posible en toda la cavidad y en la parte fija como en la parte móvil, esto con el fin de evitar los efectos de contracción diferencial. Cabe destacar que al momento de realizar el diseño de un molde, el sistema de refrigeración es lo último que se debe diseñar.
  • Barras expulsoras: al abrir el molde, estas barras expulsan la pieza moldeada fuera de la cavidad, pudiendo a veces contar con la ayuda de un robot para realizar esta operación.
Comúnmente se utiliza el acero bonificado (templado y revenido) que algunos lo conocen como acero P20, debido a la norma americana AISI. Este acero es un material en que se puede pulir fácilmente, ya que se puede trabajar en el estado de suministro (tornear, fresar, etc.), tiene una dureza similar a la de los aceros 705 y 709.Este material es ideal como molde ya que es efectivo con cualquier tipo de plástico corrosivo.


 Control de parámetros
Los parámetros más importantes para un proceso de inyección son los siguientes.

Ciclo de moldeo

En el ciclo de moldeo se distinguen 6 pasos principales (aunque algunos autores llegan a distinguir hasta 9 pasos):
  • 1. Molde cerrado y vacío. La unidad de inyección carga material y se llena de polímero fundido.
  • 2. Se inyecta el polímero abriéndose la válvula y, con el husillo que actúa como un pistón, se hace pasar el material a través de la boquilla hacia las cavidades del molde.
  • 3. La presión se mantiene constante para lograr que la pieza tenga las dimensiones adecuadas, pues al enfriarse tiende a contraerse.
  • 4. La presión se elimina. La válvula se cierra y el husillo gira para cargar material; al girar también retrocede.
  • 5. La pieza en el molde termina de enfriarse (este tiempo es el más caro pues es largo e interrumpe el proceso continuo), la prensa libera la presión y el molde se abre; las barras expulsan la parte moldeada fuera de la cavidad.
  • 6. La unidad de cierre vuelve a cerrar el molde y el ciclo puede reiniciarse.
 Colada fría y caliente
Existen dos tipos de colada. La colada fría es el remanente de polímero solidificado que queda en los canales, y que es necesario cortar de la pieza final. La colada caliente mantiene al polímero en estado fundido para continuar con la inyección. Con esta técnica se ahorra una considerable cantidad de plástico, aunque presenta algunos inconvenientes: los pigmentos deben tener mayor resistencia a la temperatura, el polímero aumenta su historia térmica, el molde debe ser diseñado especialmente para esto, etc.

Coloración de la pieza
La coloración de las piezas a moldear es un paso crítico, puesto que la belleza de la pieza, la identificación y las funciones ópticas dependen de este proceso. Básicamente existen tres formas de colorear una pieza en los procesos de inyección:
  • 1. Utilizar plástico del color que se necesita (precoloreados).
  • 2. Utilizar un plástico de color natural y mezclarlo con pigmento en polvo o colorante líquido.
  • 3. Utilizar un plástico de color natural y mezclarlo con concentrado de color.
Temperatura de proceso
Para inyectar un polímero, específicamente un termoplástico, es necesario conocer su temperatura de transición vítrea (Tg) y su temperatura de fusión de la región cristalina (Tm), si es un polímero semicristalino.
La temperatura de operación de cada termoplástico no es estándar, y varía según el proveedor (de acuerdo con el peso molecular, ramificación del polímero, polidispersidad y aditivos). Es por tanto necesario solicitarle una Hoja de Especificaciones donde se encuentre tanto el índice de fluidez como la temperatura de trabajo, que además es un rango de temperaturas, y la temperatura de degradación, con lo cual se obtiene un intervalo dentro del cual se puede trabajar el material eficientemente.

Dimensiones de la máquina
La efectividad de una máquina de inyección se basa en la cantidad de presión que esta pueda generar, por dos razones principales:
  • 1. Incrementando la presión se puede inyectar más material
  • 2. Incrementando la presión se puede disminuir la temperatura, que se traduce en menor costo de operación.
Las máquinas se venden dependiendo de su fuerza de cierre expresada en toneladas, y van desde 10 Ton las más pequeñas, hasta 3.000 Ton las de mayor capacidad.

Ventilación y presión
Conforme el polímero avanza desde la entrada o tolva, va reduciendo el tamaño de sus gránulos por medios tanto mecánicos (fricción, compresión y arrastres) como térmicos (aumento en su temperatura interna), llegando al estado gomoso o fusión, dependiendo de si el material es amorfo o semicristalino. Conforme este material avanza, el aire presente experimenta un aumento de presión y generalmente escapa en dirección opuesta al avance del polímero. Si esto no ocurre, entonces es necesario abrir una compuerta de ventilación, igualándose de esta manera la presión generada a la presión atmosférica. Debido a las propiedades de viscosidad y de arrastre del polímero, sólo escapa mediante la ventilación una parte mínima de plástico.
El error más común con la ventilación es el añadir aditivos espumantes desde la tolva. Los espumantes generan gas, aire o agua que queda atrapado en células abiertas o cerradas del polímero. No obstante, si la presión disminuye a presión atmosférica, este gas generado escapa, resultando así un polímero sin espumar. Para una eficiente alimentación del espumante, éste debe ser añadido después de la ventilación o eliminar el mismo.

jueves, 6 de octubre de 2011

Moldeo por inyección

Antecedentes históricos
 El diseño actual de la máquina de moldeo por inyección ha sido influido por la demanda de productos con diferentes características geométricas, con diferentes polímeros involucrados y colores. Además, su diseño se ha modificado de manera que las piezas moldeadas tengan un menor costo de producción, lo cual exige rapidez de inyección, bajas temperaturas, y un ciclo de moldeo corto y preciso.
John Hyatt registró en 1872 la primera patente de una máquina de inyección, la cual consistía en un pistón que contenía en la cámara derivados celulósicos fundidos. Sin embargo, se atribuye a la compañía alemana Cellon-Werkw el haber sido pionera de la máquina de inyección moderna. Esta firma presentó, en 1928, una patente incluyendo la descripción de nitrocelulosa (celuloide). Debido al carácter inflamable de la nitrocelulosa, se utilizaron posteriormente otros derivados celulósicos como el etanoato de celulosa. Los británicos John Beard y Peter Delafield, debido a ciertas diferencias en la traducción de la patente alemana, desarrollaron paralelamente la misma técnica en Inglaterra, con los derechos de patente inglesa para la compañía F.A. Hughes Ltd.
El primer artículo de producción masiva en Inglaterra fue la pluma fuente, producida durante los años treinta por la compañía Mentmore Manufacturing. La misma utilizaba máquinas de moldeo por inyección de Eckert & Ziegler (Alemania). Estas máquinas funcionaban originalmente con aire comprimido (aproximadamente 31 kg/cm2); el sistema de apertura de molde y la extracción de la pieza eran realizados manualmente, y los controles incluían válvulas manuales, sin control automático ni pantallas digitales; además, carecían de sistemas de seguridad.
En 1932 apareció la primera máquina para inyección operada con sistemas eléctricos, desarrollada por la compañía Eckert & Ziegler. Al mismo tiempo, otros países como Suiza e Italia empezaban a conseguir importantes avances en maquinaria. Ya a finales de los años treinta, el polietileno y el PVC —ambos, de alta producción y bajo costo— provocaron una revolución en el desarrollo de la maquinaría, teniendo el PVC mayor éxito como material para extrusión.
En 1951 se desarrolló en Estados Unidos la primera máquina de inyección con un tornillo reciprocante (o, simplemente, husillo), aunque no fue patentada hasta 1956. Este cambio ha sido la aportación más importante en la historia de las máquinas inyectoras. Al finalizar la segunda guerra mundial, la industria de la inyección de plástico experimentó un crecimiento comercial sostenido. Sin embargo, a partir de la década de los ochenta, las mejoras se han enfocado a la eficiencia del diseño, del flujo del polímero, el uso de sistemas de software CAD, inclusión de robots más rápidos para extracción de piezas, inyección asistida por computadora, eficacia en el control de calentamiento y mejoras en el control de la calidad del producto.

El principio del moldeo

El moldeo por inyección es una de las tecnologías de procesamiento de plástico más famosas, ya que representa un modo relativamente simple de fabricar componentes con formas geométricas de alta complejidad. Para ello se necesita una máquina de inyección que incluya un molde. En este último, se fabrica una cavidad cuya forma es idéntica a la de la pieza que se desea obtener y para su tamaño se aplica un factor de contracción el cual se agrega en las medidas de la cavidad para que al enfriarse la pieza moldeada se logren las dimensiones deseadas. La cavidad se llena con plástico fundido, el cual se solidifica, manteniendo la forma moldeada.
Los polímeros conservan su forma tridimensional cuando son enfriados por debajo de su Tg —y, por tanto, también de su temperatura de fusión para polímeros semicristalinos. Los polímeros amorfos, cuya temperatura útil es inferior a su Tg, se encuentran en un estado termodinámico de pseudoequilibrio. En ese estado, no existen movimientos de rotación y de relajación (desenredo de las cadenas) del polímero. Es por esta causa que, en ausencia de esfuerzos, se mantiene la forma tridimensional. Los polímeros semicristalinos poseen, además, la característica de formar cristales. Estos cristales proporcionan estabilidad dimensional a la molécula, la cual también es —en la región cristalina— termodinámicamente estable. La entropía de las moléculas del plástico disminuye drásticamente debido al orden de las moléculas en los cristales.

Moldeo por Inyección
En ingeniería, el moldeo por inyección es un proceso semicontinuo que consiste en inyectar un polímero o cerámico en estado fundido (o ahulado) en un molde cerrado a presión y frío, a través de un orificio pequeño llamado compuerta. En ese molde el material se solidifica, comenzando a cristalizar en polímeros semicristalinos. La pieza o parte final se obtiene al abrir el molde y sacar de la cavidad la pieza moldeada.
El moldeo por inyección es una técnica muy popular para la fabricación de artículos muy diferentes. Sólo en los Estados Unidos, la industria del plástico ha crecido a una tasa de 12% anual durante los últimos 25 años, y el principal proceso de transformación de plástico es el moldeo por inyección, seguido del de extrusión. Un ejemplo de productos fabricados por esta técnica son los famosos bloques interconectables LEGO y juguetes Playmobil, así como una gran cantidad de componentes de automóviles, componentes para aviones y naves espaciales.
Los polímeros han logrado sustituir otros materiales como son madera, metales, fibras naturales, cerámicas y hasta piedras preciosas; el moldeo por inyección es un proceso ambientalmente más favorable comparado con la fabricación de papel, la tala de árboles o cromados. Ya que no contamina el ambiente de forma directa, no emite gases ni desechos acuosos, con bajos niveles de ruido. Sin embargo, no todos los plásticos pueden ser reciclados y algunos susceptibles de ser reciclados son depositados en el ambiente, causando daños al medio ambiente.
La popularidad de este método se explica con la versatilidad de piezas que pueden fabricarse, la rapidez de fabricación, el diseño escalable desde procesos de prototipos rápidos, altos niveles de producción y bajos costos, alta o baja automatización según el costo de la pieza, geometrías muy complicadas que serían imposibles por otras técnicas, las piezas moldeadas requieren muy poco o nulo acabado pues son terminadas con la rugosidad de superficie deseada, color y transparencia u opacidad, buena tolerancia dimensional de piezas moldeadas con o sin insertos y con diferentes colores.